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Paysics 513, QUANTUM FIELD THEORY
Homework 5
Due Tuesday, 7*" October 2003

JAcoB LEwIS BOURJAILY

1. We are to verify the identity
[, 8771 = (T77)" A"
It will be helpful to first have a good representation of (J*?)", . This can be obtained by raising
one of the indices of (J*7),, which is defined in Peskin and Schroeder’s equation 3.18.

(TP, = g"MT ) = ig" (8587 — 606%),
= i(g""0] — 9" 07).
We will use this expression for (777)", in the last line of our derivation below. We will proceed
by direct computation.

1
Y, 8] = 1 (V2T = " 7)),
i
=1 {17 =A% = {1 {0
1

3 (9" = ~Pg"7 — g"7 4" +~7g"?),
i(g"y7 =g "),

i(g"opy" — g7 o0y,

i(g"7oy, — g"76p) ",
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2. All of the required identities will be computed by directly.
a) vyt =4
1 =00+ () () + () =4
b) vyt = —2f
Yk = vk,
= (29 — WY)E"Y,
=2k " — vk,
Skt = =2k
c) VPV =4p-q
VB = Vurp” 4V,
= (2940 — 1 Y)P" o (29" — 1),
= (2pu—2Vu) (29" —g"),
=4p - q — 294 — 24 + 494,
Sl =4p-q.

d) ki = 204K
By repeated use of the identity v#~" = 2gH" — ~

v

7,
YukBIV" = 7Y kY oY G0V,
= 29, kPa09°" — 27ukppg™ d + 27,k 9" Ve — 4KV,
= 24§y — 2pfd — 2kpd.,
=44k -p — 24Pk — 4p - k.
Yk = 294 K.
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3. We are to prove the Gordon identity,

=Uu

(0" + p)*

ioh’q,

(»)

u(p).

u(p')y"u(p) o o

Explicitly writing out each term in the brackets and recalling the anticommutation relations of
~v*, the right hand side becomes,

o[+t e, _ /-i TN TR BTG 2, LaVaki(p _ o
u®) | =, 5 | wlp) = ul’) 9m "+ =5 (0 =) + 3 (0 =)o) | ulp),
= alp) | 0 8~ = e+ 0= ) o= 0 o)
: 1
— / - 2 U T % o y
u(p) _2m( Pt ="y (0 —1') )] u(p),
[ 1
— o /,u. ,u n
1) |5 G0 =25 =) o).
Now, recall that the Dirac equation for u(p) is
pu(p) = mu(p).
Converting this for @(p’)y, one obtains
u(p')y = mau(p').
Applying both of these equations where we left of, we see that
_ [ @ )t ot N
o) | o 1 | ) = i )
Looking again at the Dirac equation, mu(p’) = u(p’)y’ = u(p’)y"p,,, it is clear that
/ m my
IN L — (] (p' +p) 0 qu
! ut) = atp!) | PP 4 ),
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4. a) To demonstrate that v° = iv%y'y24? anticommutes each of the y*, it will be helpful to

remember that whenever p # v, y#v¥ = —Y~#* by the anticommutation relations. There-
fore, any odd permutation in the order of some +'s will change the sign of the expression.
It should therefore be quite clear that

7°7° = i°y %930 = =iy = —ir®y 0912 = =05

Yo7t =i Pt = %% = =i = 1Y

7°7? = i°y19%9%? = —in®y1y? = —ir®y 01 = =P

Y°7? = iy VP yPyR = inyly? = *Ws’YOVI’YZVS i o
{¥°, "} =0.
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b) We will ﬁrst show that 7® is hermitian. Note that the derivation relies on the fact that
(7°)T =40 and (7%)T = —~%. These facts are inherent in our chosen representation of the v
matrices.

—i(y' 2T,
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3,210

Yt

—iv?y 09,

—iyty0y2a3,

= i7"y,

5

:"}l.

(v*)f
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Let us now show that (v°)% = 1.
(7°)? = —ivsr2m70i7°7 P,
= 73727177’ Y,
= 3727 7,
= 13727°7%,
= 73737
=1.

c) Note that €, is only nonzero when k # X # p # v which leaves exactly 4! = 24 nonzero
terms from the 24 possible permutations. Also note that y*y*y#~", like €xapw, 1S totally
antisymmetric—any odd permutation of indices changes the sign of the argument. Therefore,
they change sign exactly together, €, ,\Wv“'y)‘7“7” does not change sign. That is to say that
each of the 24 nonzero terms of e,i,\m,v’“”q/)‘v”v” is identical to 12377 272, So

24
6&)\;11/7’{7)\7#7” = 2460123’}/0717273 = _7757
. ’}/5:716 ,Yn,_y)\,y,u,yy
s 24 KAV .
This implies that
Y = —ieanu Y,

,Y[K,y)\,yu,yl/] _ _ienAuu,yS.

5. We will begin by simply directly computing the form of £+ from the eigenvalue equation
(P - 30) &+ (D) = £36+(D)-

Let us begin to expand the left hand side of the eigenvalue equation,

- _.)71 0 sin 6 cos ¢ +1 0 —isin fsin ¢ Jr} cos 0 0
br29)=75 sin 6 cos ¢ 0 2 \ isinfsin¢ 0 2 0 —cosf )’

(p36) = 1 ( cosf  sinfe ) .

=

2 \ sinfe® —cosh

Note that we can see here that because this matrix has determinant —1 and trace 0, the eigen-
values must be are £1. Therefore, we may write the eigenvalue equation as the system of

equations,
1 cosf  sinfe ™ €L 1/ &
a . ip 2 = :l:* 2 .
2 \ sinde —cosf & 2\ &

These two equations are equivalent; I will use the first row of equations. This becomes

+¢4 = cosfEl +sinfe €3,

Therefore,

o —ide2 D e—ide2
1 sinfe™"?y _ig 5 1 __sm&e & R 5
& = T oosg = ¢ tan(0/2)5 and &= Trosg — € tan(0/2)&%
So that

e~ cot(0/2)€2 —e ¥ tan(0/2)€2
§+:< 2(/)§+> and 5_:( 2(/)£ )
& &
To find the normalization, we must apply the normalization conditions §:L§i = 1. By direct
calculation,
ler = 1= (63)(cot®(8/2) + 1),
@y
sin?(0/2)’

€2 = ¢ sin(6/2).
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Likewise for €_,
gl =1= () (tan®(8/2) + 1),
(&)’
cos2(0/2)’
& =€ cos(0/2).
Notice that if £, satisfies £€7¢ = 1 then so does & = €™¢. So in solving the normalization
equations, we necessarily introduced an arbitrary phase n. Noting, this, spinors become

—id e i
gt [ e cos(0/2) i e "?sin(6/2)
Gr=e ( sin(0/2) and E-=e cos(0/2) ’
Lastly, we would like to set the phase n so that when the particle is moving in the +z—direction,
they reduce to the usual spin-up/spin-down forms. It should be quite obvious that n~ = 0

satisfies this condition for £_. For £T, we will set the phase to nT = ¢ so that we may lose the
e~ term when 6 = 0. So we may write our final spinors as

o= (B0, ) em ()
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